Learning Probabilistic Relational Planning Rules
نویسندگان
چکیده
To learn to behave in highly complex domains, agents must represent and learn compact models of the world dynamics. In this paper, we present an algorithm for learning probabilistic STRIPS-like planning operators from examples. We demonstrate the effective learning of rule-based operators for a wide range of traditional planning domains.
منابع مشابه
Planning with Noisy Probabilistic Relational Rules
Noisy probabilistic relational rules are a promising world model representation for several reasons. They are compact and generalize over world instantiations. They are usually interpretable and they can be learned effectively from the action experiences in complex worlds. We investigate reasoning with such rules in grounded relational domains. Our algorithms exploit the compactness of rules fo...
متن کاملModel-Based Relational RL When Object Existence is Partially Observable
We consider learning and planning in relational MDPs when object existence is uncertain and new objects may appear or disappear depending on previous actions or properties of other objects. Optimal policies actively need to discover objects to achieve a goal; planning in such domains in general amounts to a POMDP problem, where the belief is about the existence and properties of potential not-y...
متن کاملLearning Symbolic Models of Stochastic Domains
In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demon...
متن کاملIntegrating Planning, Execution, and Learning to Improve Plan Execution
Algorithms for planning under uncertainty require accurate action models that explicitly capture the uncertainty of the environment. Unfortunately, obtaining these models is usually complex. In environments with uncertainty, actions may produce countless outcomes and hence, specifying them and their probability is a hard task. As a consequence, when implementing agents with planning capabilitie...
متن کاملProbabilistic Backward and Forward Reasoning in Stochastic Relational Worlds
Inference in graphical models has emerged as a promising technique for planning. A recent approach to decision-theoretic planning in relational domains uses forward inference in dynamic Bayesian networks compiled from learned probabilistic relational rules. Inspired by work in non-relational domains with small state spaces, we derive a backpropagation method for such nets in relational domains ...
متن کامل